A General Framework for Nonholonomic Mechanics: Nonholonomic Systems on Lie Affgebroids
نویسندگان
چکیده
This paper presents a geometric description of Lagrangian and Hamiltonian systems on Lie affgebroids subject to affine nonholonomic constraints. We define the notion of nonholonomically constrained system, and characterize regularity conditions that guarantee that the dynamics of the system can be obtained as a suitable projection of the unconstrained dynamics. It is shown that one can define an almost aff-Poisson bracket on the constraint AV-bundle, which plays a prominent role in the description of nonholonomic dynamics. Moreover, these developments give a general description of nonholonomic systems and the unified treatment permits to study nonholonomic systems after or before reduction in the same framework. Also, it is not necessary to distinguish between linear or affine constraints and the methods are valid for explicitly time-dependent systems.
منابع مشابه
Optimal control of nilpotent systems: a sub-Riemannian approach
We present a general framework for the optimal control of driftless nonlinear systems defined by means of distributions of smooth vector fields that generate nilpotent Lie algebras. A smooth varying inner product on the planes of the distribution, yields the energy functional that allows to approach the optimal control problem as a sub-Riemannian geodesic problem. This class of systems is relev...
متن کاملThe Euler – Lagrange Equations for Nonholonomic Systems
This paper applies the recently developed theory of discrete nonholonomic mechanics to the study of discrete nonholonomic left-invariant dynamics on Lie groups. The theory is illustrated with the discrete versions of two classical nonholonomic systems, the Suslov top and the Chaplygin sleigh. The preservation of the reduced energy by the discrete flow is observed and the discrete momentum conse...
متن کاملGeometry and integrability of Euler–Poincaré–Suslov equations
We consider nonholonomic geodesic flows of left-invariant metrics and left-invariant nonintegrable distributions on compact connected Lie groups. The equations of geodesic flows are reduced to the Euler–Poincaré–Suslov equations on the corresponding Lie algebras. The Poisson and symplectic structures give raise to various algebraic constructions of the integrable Hamiltonian systems. On the oth...
متن کاملA Survey of Lagrangian Mechanics and Control on Lie Algebroids and Groupoids
In this survey, we present a geometric description of Lagrangian and Hamiltonian Mechanics on Lie algebroids. The flexibility of the Lie algebroid formalism allows us to analyze systems subject to nonholonomic constraints, mechanical control systems, Discrete Mechanics and extensions to Classical Field Theory within a single framework. Various examples along the discussion illustrate the soundn...
متن کاملDiscrete Nonholonomic Lagrangian Systems on Lie Groupoids
This paper studies the construction of geometric integrators for nonholonomic systems. We derive the nonholonomic discrete Euler-Lagrange equations in a setting which permits to deduce geometric integrators for continuous nonholonomic systems (reduced or not). The formalism is given in terms of Lie groupoids, specifying a discrete Lagrangian and a constraint submanifold on it. Additionally, it ...
متن کامل